EBreast II

Radiation physics

Co-funded by the Erasmus+ Programme of the European Union

- Physical constants, definitions and prefixes
- Subatomic particles
- Properties of electromagnetic radiation
- The electromagnetic spectrum
- Types of ionising radiation

- The atomic model
- Excitation, ionisation and binding energy
- Radionuclides and radioactivity
- Production of x-rays

- The inverse square law
- Attenuation and half-value layer
- Interactions between photons and matter
- Interaction between charged particles and matter

- Absorbed dose
- Equivalent dose
- Effective dose
- Depth dose curves
- Monitor Unit (MU)

Physical constants

- Planck's constant: $h \approx 6.63 \cdot 10^{-34} \text{ J} \cdot \text{s}$
- Speed of light: $c \approx 3.0 \cdot 10^8 \text{ m/s}$
- Elementary charge $e \approx 1.6 \cdot 10^{-19} \text{ C}$

Definitions

- 1 eV equals the amount of kinetic energy one electron will gain when it is accelerated from rest through an electric potential difference of 1 V in vacuum.
- $1 \text{ eV} \approx 1.6 \cdot 10^{-19} \text{ J}$
- The resting energy (E) of a particle is the rest mass (m) of the particle multiplied by the speed of light squared (c):
- $E = mc^2$

Prefixes

The most common prefixes are

- Giga (G) : one billion =10⁹
- Mega (M): one million =10⁶
- Kilo (K): one thousand =10³
- milli (m): one thousandth = 10⁻³
- micro (μ): one millionth =10⁻⁶
- nano (n): one billionth =10⁻⁹

Subatomic particles

Particle	Symbol	Comments			
Proton	р	Nucleon (found in the nucleus of atoms)			
Neutron	n	Nucleon (found in the nucleus of atoms)			
Alpha- particle	α	Two protons and two neutrons, ejected in α -decays of heavy radioactive nuclei			
Electron	e⁻ or β⁻	Located in the atomic shells. Ejected in β -decays of radioactive nuclei			
Positron	e ⁺ or β ⁺	Antiparticle of the electron, produces annihilation radiation when the two interact. Ejected in β^+ -decays of some short-living artificial produced radioactive nuclei			
Neutrino	ט	Emitted during β -decays, has very weak attenuation in matter			
Photon/ quantum	h∙ט	Travels at the speed of light, electromagnetic radiation			
			1		

EBreast II

Subatomic particles

Particle	Symbol	Rest mass [kg]	Rest energy [MeV]	Charge *
Proton	р	1.672 · 10 ⁻²⁷	938	+1
Neutron	n	$1.675 \cdot 10^{-27}$	939	0
Alpha-particle	α	6.645 · 10 ⁻²⁷	3718	+2
Electron	e⁻ or β⁻	9.109 · 10 ⁻³¹	0.511	-1
Positron	e^+ or β^+	9.109 · 10 ⁻³¹	0.511	+1
Neutrino	U	0?	0?	0
Photon/ quantum	h∙ט	0	0	0

* Number of elementary charges (1)

What is radiation?

- Radiation is emission of energy from a radiative source to another medium or through space.
- The energy is in the form of waves or subatomic particles

Radiation

- Ionising versus non-ionising radiation
 - Only ionising radiation is used in the treatment of cancerous tumours
- Electromagnetic radiation versus particle radiation
- Indirect versus direct ionising radiation

Properties of electromagnetic radiation

- Wave-like properties:
 - \circ cycle
 - $\circ~\mbox{wavelength}~\lambda$
 - \circ frequency ν
 - \circ amplitude A
- $c = \lambda \cdot v$
- Particle-like properties:
- Photon energy E = $h \cdot v$
- $\mathsf{E} = \frac{hc}{\lambda}$

The electromagnetic spectrum

Can be divided into two parts:

- 1) Ionising radiation (high enough energy to ionise atoms in tissue)
 - Gamma-rays
 - X-rays
 - High-energy ultraviolet (UV) rays (energy>12 eV)
- 2) Non-ionising radiation
 - Low-energy ultraviolet (UV) rays
 - Visible light
 - \circ Infrared radiation
 - Microwaves
 - Radio waves

The electromagnetic spectrum

EBreast II

The atomic model

(Sizes are not in scale, colours are for demonstration purposes only)

- Positively charged nucleus, containing
 - Positively charged protons
 Neutrons (neutral)
- Surrounded by negatively charged electrons
- Atom is neutral
- Diameter of the atom: order of magnitude 10⁻¹⁰ m
- Diameter of the nucleus: order of magnitude 10⁻¹⁴ m

The atomic model- electron shells

Shell number (n)	Shell	Max no. of electrons	2n ²
1	К	2	2
2	L	8	8
3	Μ	18	18
4	Ν	32	32

EBreast I

- Shell number n cannot contain more than 2n² electrons
- Outer shell cannot contain more than 8 electrons

Excitation, ionisation and binding energy

- Excitation of the atom: A raise in the energy of one electron caused by collisions or interactions causes the electron to move to a shell at a higher energy level.
- Ionising of the atom: An interaction between the atom and ionising radiation causes an electron in an a shell to receive sufficient energy in order to escape the atom, creating an ion and a free electron.
- The binding energy in an atomic shell is defined as the amount of energy that the electron in the shell must receive in order to be released from the atom.
- The binding energy is larger in the K shell than in the L shell, and larger in the L shell than the M shell, and so on.

Elements and isotopes

- An element is a nucleus with a given value of the atomic number Z.
- The isotope X has Z protons and A nucleons (protons and neutrons)
- Z is the atomic number
- A is the mass number
- Number of neutrons =A-Z
- Number of electrons in the neutral atom =Z

Isotopes- example

- The Carbon-12 isotope has 12 nucleons = mass number 12
- Number of protons = atomic number is 6
- Number of neutrons = 12-6 =6
- Number of electrons in the neutral carbon atom is the same as number of protons =6

12

Radionuclides

- Radionuclides (radioisotopes) are unstable nuclides that can emit radiation spontaneously
- This emission is also called radioactive decay, and can be particle radiation (α-, or β- decay) or electromagnetic radiation (γ- decay)
- The radionuclides are unstable because
 - the ratio between the number of protons and neutrons in the nucleus is not "ideal"
 - or because the nucleus has excess energy after emitting particle radiation

Activity and half-life

- Activity of a radioactive isotope is measured in numbers of decays per second. The unit is called Bequerel (Bq), 1 Bq is defined as 1 decay per second. (1 Bq = s⁻¹)
- Half-life of a radioactive isotope is defined by the time it takes before the number of remaining nuclei that have not emitted radiation is halved.

Alpha-decay

- Heavy unstable nuclei (A>150) with excess of protons relative to neutrons emits α-radiation
 - The α-particle is a helium nucleus, consisting of two protons and two neutrons
- Daughter nucleus: Z reduced by 2, A reduced by 4

Beta minus decay

- Lighter unstable nuclei with an excess of neutrons relative to protons emits β⁻ -radiation
- The β^- -particle is an electron
- n -> p + β⁻ + υ
- Daughter nucleus: Z increased by 1

Beta plus decay

- Lighter unstable nuclei with an excess of protons relative to neutrons emits β⁺ -radiation
- These radionuclides are artificially produced in cyclotrons
- The β^+ -particle is a positron, the anti-particle of the electron
- p -> n + β⁺ + υ
- Daughter nucleus: Z decreased by 1

Gamma decay

- Nuclei with excess energy after emitting particle radiation
- Excess energy is emitted as electromagnetic radiation, photons, γ-rays

The formation of X-rays

- Electrons are accelerated to high kinetic energy in the linear accelerator (LINAC) or in an x-ray tube and hits a target of heavy metal (often Tungsten)
- Interactions between the electrons and target atoms leads to the formation of X-rays by these two processes:
 - Bremsstrahlung
 - $\odot\,$ Characteristic radiation

Bremsstrahlung _{E1}

 Bremsstrahlung, or braking radiation, is produced when the incoming electron passes near the nucleus of the target atom.

Bremsstrahlung

- The electron loses kinetic energy, and this energy loss is converted into photon energy in the form of an X-ray photon.
- The total energy is conserved in the process, so the energy of the incoming electron E₁, is divided between the X-ray photon and the electron after the process. The electron continues with a reduced energy E₂.

 $E_1 = E_2 + h \cdot v$

h∙ט

Characteristic X-rays

- Characteristic radiation is created after an ionising process.

Characteristic X-rays

• The incoming electron interacts with an electron of the target atom, and the atom is ionised.

```
E_1 = E_2 + E_b + E_3
```


Characteristic X-rays

 The total energy is conserved in the process, so that the energy of the incoming electron, E_1 , is divided between energy of the electron after the process, E_{2} , the binding energy of the electron ejected from the atom, E_h, and the kinetic energy of the ejected electron, E_3 .

 $E_1 = E_2 + E_b + E_3$

Characteristic radiation

• This ionisation process leaves a vacancy in the shell, and this is immediately filled by an electron from a shell of a higher energy level, which causes the potential energy of this electron to decrease.

Characteristic radiation

h·IJ

 This transition produces a characteristic X-ray photon. The energy of this photon is equal to the difference in binding energies between the two shells involved in the transition.

 $h \cdot v = E_b - E_{b2}$

Radiation intensity

 The intensity of radiation can be defined as the energy associated with radiation that is emitted per unit of surface area and per unit of time.
The inverse square law

The inverse square law

The intensity of radiation from a point source is inversely proportional to the squared distance

Attenuation of photons (X-rays and γ -rays) through matter

μ: linear attenuation coefficient, related to amount of attenuation per unit thickness of matter/tissue

10

Half Value Layer (HVL)

The interaction of photons with matter

- Coherent scattering
- Photoelectric effect
- Compton effect
- Pair production
- Photodisintegration

Coherent scattering

 A low-energy photon interacts with the atom, and the energy transferred to the atom is minimum.

Coherent scattering

 The process does not cause ionisation, it contributes to scattering as the direction of the photon is slightly changed after the interaction

Photoelectric effect

- The photon interacts with an inner orbital electron of the atom.
- All the photon energy is transferred to the electron; thus, the photon disappears.

Photoelectric effect

 $h \cdot v = E_2 + E_b$

- Results in a positive ion and a free electron.
- h·υ >E_b
- If the photon energy (h·υ) is larger than the binding energy E_b, the rest of the energy is kinetic energy E₂ to the free electron.

Photoelectric effect

- Vacancy in the shell => characteristic radiation
- The process is most important for lower photon energies and higher atomic numbers.

- $h \cdot v_1 >> E_b$
- Interaction between a photon and a free electron

 $h \cdot v_1 = h \cdot v_2 + E_2$

The energy of an incoming photon h·υ₁, is divided by the scattered electron E₂ and a scattered photon h·υ₂

EBreast I

Pair production

 Photon interacts with the electrical field close to the atomic nucleus

Pair production

• The photon disappears while an electron-positron pair is created.

h·υ ≥ 1.022 MeV

h·ט ≥ 1.022 MeV

Annihilation

EBreast II

Photodisintegration

• Photon interacts with the atomic nucleus

h·ט ≈ 10-15 MeV

(2)

Photodisintegration

h·ט ≈ 10-15 MeV

 The energy is absorbed by the nucleus, which becomes unstable, and the nucleus ejects a neutron

Relative amounts of photon interactions

- α-particle: Charge +2
- Loses energy by Coulomb interactions with the atomic electrons
- Loses a fraction of its energy per ionisation

(2,3 p. 29)

• β-radiation (charge -1)

- Path of beta radiation in matter
- The β- particle has a more "tortuous" path than the αparticle.

• When a β + / positron interacts with an atomic electron, they annihilate, and 2 photons with energy 0.511 MeV are created

Linear energy transfer

- Linear energy transfer (LET) is defined as the mean energy that a particle deposits per unit length when it passes through a substance.
- Unit of LET: keV/μm
- For heavy charged particle radiation, LET increases with charge and decreases with the velocity of the moving particle

Range of α-particles: < 10 cm in air, <100 μm in tissue

A source of α-radiation **inside** the body may give large radiation doses!

(3)

Particle sizes are not in scale.

- Range of β—particles ≈ 5 mm in tissue
- Do not use heavy metal to shield against β- radiation, this would produce brehmsstrahlung.
- β+ radiation -> annihilation radiation

(3)

(Particle sizes are not in scale)

Range of β—particles ≈ 5 mm in tissue

(3)

(Particle sizes are not in scale)

X- rays and gamma- rays have the ability to penetrate tissue

Example: Cs-137 γradiation 0.662 MeV; HVL ≈ 9 cm of water

5 HVL reduces the intensity by about 97 %

(3)

Primary interaction-> secondary interactions

(1, 2, 3)

EBreast I

Absorbed dose

- Primary interactions
- Secondary interactions

- The absorbed dose is defined by $D = \frac{dE}{dm}$
- Unit of absorbed dose: Gray (Gy)
- 1 Gy = 1 J/kg

Dose rate

- Dose rate is absorbed dose per unit of time.
- Example: If a treatment apparatus delivers 2 Gy/min at a certain distance, the dose will be 1 Gy for half a minute of treatment.

Equivalent dose

- Takes into account that different types of radiation can cause different amount of damage.
- Unit: Sievert [Sv], Sv = J/kg
- Equivalent dose [Sv] = Radiation weighting factor x Absorbed dose [Gy]
- $Sv = w_R \cdot Gy$
- w_R is the weight factor for the radiation in question.
- Related to Linear energy transfer (LET)

(4)

Radiation weighting factor

Radiation type	Weighting factor w _R	
Photons	1	
Electrons and muons	1	
Protons and charged pions	2	
Alpha particles, fission fragments, heavy ions	20	
Neutrons	A continuous curve as a function of	
	neutron energy	EP

Effective dose

 Weighted sum of equivalent doses to organs

$$E = \sum_{i=1}^{N} w_i H_i$$

 $(\mathbf{4})$

- i goes from 1 to N, number of organs
- and w_i is the weighting factor of organ i
- Organ weighting factors are related to the radiosensitivity of the organ
- Unit: Sievert [Sv]

Organ	Organ weighting factor W _τ
Breast Bone marrow Colon Lung Remainder	0.12 0.12 0.12 0.12 0.12 0.12
Stomach Gonads Bladder	0.12 0.08
Liver Oesophagus Thyroid	0.04 0.04 0.04 0.04
Bone surfaces Brain Salivary glands Skin	0.01 0.01 0.01 0.01

EBreast

Factors affecting doses and radiation intensities

 <u>The time of exposure</u> is also a factor affecting the radiation dose – when all other factors are constant, radiation dose is proportional to the exposure time.

Radiation intensity and distance from the source

Radiation intensity and thickness of attenuator/tissue

EBreast I

Properties of the radiation field

- Photon radiation fields
- Electron radiation fields

Depth dose curves- photon beams

- Range of secondary electrons -> build up
- Maximum absorbed dose (100%) at a depth under the skin
- Exponential decrease of absorbed dose after dose-max
- Depth of dose-max increases for increasing photon energy

Other factors affecting the depth dose curve of photons

- Source to skin distance (SSD): The dose reduces more rapidly with short distances than longer distances. A larger SSD gives larger relative absorbed doses deeper in the patient (at depths larger than depth of dose-max)
- Field size: A larger field gives a larger number of scattered electrons, and a larger relative absorbed dose deeper in the patient (at depths larger than depth of dose-max).
- Attenuation and other factors related to the patient: The electron density of the tissues affect the attenuation.

Electron beams

- Electron beams have a larger relative skin dose, have a dose-max close to the skin surface and a steeper exponential decrease in absorbed dose than photons produced by the LINAC at the same voltage.
- An electron beam is suitable for treatment of superficial tumours, and will give a lower absorbed dose in tissues deeper than the depth of tumour, compared to a photon beam produced in the LINAC at the same voltage.

Monitor Unit (MU)

- The Monitor unit (MU) is a measure of the radiation output of the LINAC in radiation therapy
- Measured by an ionisation chamber
- 100 MU is the amount of radiation that gives D_{max} = 1 Gy at the central axis for Source-to skin distance (SSD)=100 cm, field size 10x10 cm², and no other absorbing material in the field lsuch as wedges or shielding material.

References

- 1. Vosper M, England A, Major V. Graham's Principles and Applications of Radiological Physics. 7 ed: Elsevier; 2021.
- 2. Degerfält J, Moegelin I-M, Sharp L. Strålbehandling: Studentlitteratur AB; 2008.
- 3. Henriksen T. Radiation and Health: University of Oslo; 2015
- ICRP. 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 2007; 37 (2-4).

Authors

Mona Øynes Western Norway University of Applied Sciences

Austausch und Mobilität Echanges et mobilité Scambi e mobilità Exchange and mobility

Hes.so Haute Ecole Spécialisée de Suisse occidentale Fachhochschule Westschweiz University of Applied Sciences and Arts

Western Switzerland

